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Abstract

The potential benefits of reinforcement learning to real robotics systems are limited by its

uninformed exploration that leads to lack of sample efficiency. To address this drawback, we

propose a method that combines reinforcement and imitation learning by shaping the reward

function with a state-action dependent potential that is learned from demonstrations. The

shaping potential specifies high-value areas of the state-action space that are worth exploring

first and help accelerate the policy learning. In particular, we use deep generative models

to represent the shaping potential and optimize the policy using off-policy actor-critic style

RL algorithms, such that our method can apply to continuous state and action spaces.

We evaluate our methods on a wide range of simulated manipulation tasks and show that

our method significantly improves the sample efficiency of reinforcement learning. More

crucially, unlike the majority of existing methods that incorporate demonstrations as hard

constraints on policy optimization, our approach only uses the demonstration data to bias

exploration and thereby does not suffer from sub-optimal demonstrations.
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Chapter 1

Introduction

Machine learning techniques, typically imitation learning (IL) and reinforcement learning

(RL), have been making significant progress in a wide variety of complex real-world robotic

control and manipulation tasks [1][2]. However, the drawbacks of IL and RL are both

obvious. IL, where the policy is trained to mimic demonstrated behaviours, requires a large

amount of training data or on-line corrections [3], which is not desired or even possible

in many real-world robotic systems. It also performs poorly when the demonstrations are

sub-optimal. RL, on the other hand, suffers from slow convergence due to lack of data

efficiency and unnecessary interactions with the environment. In addition, designing a

dense, informative reward function can be challenging for many tasks in robotics.

Extensive amount of works have been trying to address the aforementioned problems

by combining the two methods, IL and RL, in various ways. For example, Inverse RL

(IRL) and Adversarial IL methods, such as GAIL [4], AIRL [5] and DAC [6] avoid design-

ing the reward function by inferring it from demonstrations. Rajeswaran et al. [7] and

Vercerik et al. [8] proposed to add a Behavioral Cloning (BC) objective in addition to

the RL objective to the policy, biasing the policy towards demonstrated behaviors. How-

ever, a common problem with these methods is that they assume the demonstrations to be

optimal, and their performance may drop significantly when sub-optimal demonstrations

are given. Methods that benefit from both RL and IL but do not suffer from suboptimal

demonstrations also exist. For example, Mulling et al. [9] proposed to initialize the policy

via BC and the fine-tune it via pure RL afterwards, which showed decent performance in

training a real robot arm to play table tennis. Nair et al. [10] introduced Q-filter where the

policy only learns to imitate good demonstrated behaviors based on the Q-value estimates.

Though these methods take sub-optimality of demonstrations into consideration, they are

not very effective in practice due to the distribution shift issue [3] and Q-value estimation

errors. Brys et al. [11] proposed a novel idea of using state-action based reward shaping

[12] to incorporate sub-optimal demonstrations into RL without biasing the learned policy.

However, the class of shaping potentials they considered was limited to discrete action and

low dimensional state space.
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CHAPTER 1. INTRODUCTION 2

In this thesis, we extend the idea in [11] to high dimensional, continuous state and

action spaces so that it can be used for robotic control and manipulation tasks. We use

a shaping potential in the form of deep generative models, e.g. Generative Adversarial

Networks (GANs) [13] and normalizing flows (NFs) [14], and incorporate reward shaping

into off-policy actor-critic algorithms such as TD3 [15] and SAC [16] that naturally support

continuous state and action spaces. We evaluate our work using two popular RL and IL

environment suites, MetaWorld [17] and OpenAI Gym [18], which include many control

and manipulation tasks with well documented baseline results using the state-of-the-art RL

algorithms. We compare our method against several popular RL and IL methods, especially

methods that can overcome sub-optimality in demonstrations in theory, e.g. RL with BC

pre-training [9] and RL with BC plus Q-filter [10].

In summary, we notice that most existing methods that combine RL and IL cannot

gracefully handle sub-optimal demonstrations, and the performance of the policies trained

via these methods drop significantly when sub-optimal demonstrations are given. To ad-

dress this problem, we propose to combine IL and RL using reward shaping through deep

generative models. We show that our method is applicable to complex robotic control

and manipulation tasks in simulation, and it can perform better in handling sub-optimal

demonstrations than existing methods.



Chapter 2

Related Work

2.1 Addressing the Sample Efficiency Problem in Reinforce-

ment Learning

Though reinforcement learning (RL) algorithms have demonstrated significant results on a

wide range of simulated robotic control and manipulation tasks, their applicability to real

world robotic systems is hampered by their low sample efficiency. Over the past a few

decades, significant amount of work has been dedicated to increase the sample efficiency

of RL in different ways. In this section, we review some representative research directions

that have shown promising result in addressing this problem for robotic tasks, which include

learning the environment model (i.e. model-based RL), leveraging off-policy data, designing

unbiased reward function and some efficient exploration strategies.

2.1.1 Model-Based RL

One of the major branching points in RL algorithms is based on whether a model of the

environment is learned. Model-based RL algorithms have always been an active RL research

field and are known in general to outperform model-free RL methods in terms of sample

efficiency [19]. In practice, they have also been successfully applied to many simulated as

well as real-world robotic systems, such as inverted pendulums [20], legged robots [21], and

manipulators [22]. However, most model-based RL algorithms that demonstrate great sam-

ple efficiency use relatively low-capacity model classes such as Gaussian process [20][23] or

time-varying linear models [24][25] to represent the environment, which introduce additional

assumptions and thereby only applicable to simple tasks with low dimensional state space.

Although more expressive model classes, e.g. neural networks, have also been adopted in

recent model-based RL algorithms [26][27][28], the advantage of these methods in terms of

sample efficiency are not as much when used in more complex environments. This is because

learning the environment model requires more training data, and the learned model is more

prone to over-fit.

3



CHAPTER 2. RELATED WORK 4

In particular, when it comes to image-based environments, model-based methods typ-

ically learn a latent space model of the environment with extra loss added to match the

latent space to the original observation space, such as SLAC [29] and PlaNet [30]. The

problem with these methods is that they achieve better sample efficiency than model-free

RL at the cost of high system complexity and multiple learning objectives. In addition

to the losses on policy and value optimizations, there are several auxiliary losses such as

transition loss, observation loss and reward loss, which require careful balancing during

training. Therefore, these methods are known to be sensitive to hyper-parameter settings

and hard to transform from one environment to another.

In general, the challenge of model-based RL is the representation and learning of the

environment model. In high dimensional spaces, learning a good model of the environment

may be more difficult than learning the policy itself, and the agent may exploit biases in

the learned model, resulting in sub-optimal behavior in the actual environment. Due to this

issue, the difficulty of generalizing model-based RL algorithms to complex environments is

much higher than that for model-free RL algorithms. Moreover, for image-based environ-

ments, there are model-free RL algorithms, e.g. SAC+AE [31], that show similar sample

efficiency to model-based RL methods, but with only minor modifications to the commonly

used model-free RL methods. Therefore, in this work, we put our focus on incorporat-

ing demonstrations into recent model-free RL algorithms, as discussed in the next section,

to avoid building an overly complicated system and such that our method can possibly

generalize to image-based environments easily.

2.1.2 Model-Free RL

Unlike model-based RL algorithms, model-free RL methods are usually easy to implement

and apply to a wide range of environments with varying complexity. A large amount of

model-free RL algorithms have been proposed over the last few years, and some them have

shown working very well across multiple domains, such as TD3 [15], SAC [16], DDPG [32],

TRPO [33], PPO [34], etc. These algorithms have also been commonly used as baselines in

many benchmark RL environments [17][18][35].

In model-free RL, there used to be two main approaches to represent and train agent,

policy optimization and Q-learning. Methods using the policy optimization approach, such

as TRPO and PPO, optimize the policy directly with respect to the performance objective,

and always use data collected by the most recent policy (i.e. on-policy). This class of

methods are generally more stable and insensitive to hyperparameters as compared to Q-

learning, and they naturally support continuous observation and action spaces, which is

the case for most robotic domains. However, the poor sample efficiency of these methods

is predetermined by their on-policy learning constraint, and the resulting computational

cost quickly becomes intractable as the task complexity increases. In contrary, methods

using the Q-learning approach, such as DQN [36] and C51 [37], aim to learn the optimal
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action-value function based on the Bellman equation [38]. These methods are more sample

efficient as they allow re-use of past experiences. However, pure Q-learning methods tend

to be unstable with many failure modes [39] and are only applicable to environments with

discrete action spaces.

Recently, the Deterministic Policy Gradient (DPG) algorithm proposed by Silver et al.

[40] gives a way to combine policy optimization and Q-learning by using a parametrized de-

terministic policy to perform the optimization in Q-learning, which leads to an actor-critic

style RL algorithm. This formulation makes it possible to apply off-policy learning to envi-

ronments with continuous action spaces and balance between sample efficiency and stability.

Their subsequent work, DDPG [32], which leverages deep neural networks to parametrize

the policy and the action-value function, shows results in several robotic control and ma-

nipulation tasks with significantly better sample efficiency than on-policy algorithms [41].

However, DDPG tends to be more sensitive to hyper-parameters due to its Q-learning man-

ner. More recently, two variants of DDPG, known as TD3 and SAC, use clipped double

Q learning and entropy regularized RL [42] to further address the action-value function

approximation and exploration issues of DDPG, respectively. Both algorithms show im-

proved performance in both cumulative return and sample efficiency on many complex

tasks in robotics. In particular, SAC+AE [31] simply trains SAC in latent space with an

auxiliary reconstruction loss and shows comparable sample efficiency to the state-of-the-art

model-based methods [29][30] on several image-based control tasks from DeepMind Control

Suite [35]. Moreover, off-policy algorithms can learn from experiences not necessarily gen-

erated by the policy, which provides more options to incorporate environmental or human

knowledge to the learning process, such as expert demonstrations. Therefore, in developing

our method to combine RL and IL, we primarily consider using off-policy actor-critic style

methods, i.e. TD3 and SAC, as our base RL algorithms.

2.1.3 Rewards and Exploration Bonuses

Besides the representation and training strategies of the policy, the problem of low sample

efficiency in RL is also caused by the sparse and uninformative reward signal used in many

robotic tasks, as well as inefficient exploration strategies that cause shallow exploration and

unnecessary re-visit of many states.

Designing an informative reward function is challenging in many cases as it requires a

fairly amount of task-specific prior knowledge from the experimenter and, if not designed

properly, may lead to reward hacking as discussed by Ng et al. [43] and Amodei et al. [44],

where the agent ends up maximizing the given reward without performing the intended task.

A common strategy to circumvent this problem is to use reward shaping [12][43], where the

optimal policy remains unchanged between the Markov Decision Processes before and after

the reward transformation. This policy invariant property provides more flexibility and

tolerance in reward function design. Therefore, reward shaping has been used in many
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recent RL methods [45][46][47][48]. Our proposed method also builds upon reward shaping,

however, our method is different as we consider the case where the observation and action

spaces are both continuous and the shaping rewards come from expert demonstrations.

Besides reward shaping, existing works on exploration in RL also introduced the notion

of intrinsic motivation/rewards which is usually an exploration bonus additional to the

environment reward signal. There are many ways to generate this exploration bonus, such as

using visitation count [49][50][51], which encourages the agent to explore unseen states, and

information gain [52][53][54], which encourages the agent to perform actions that minimize

certain prediction error. The prediction error can be in many forms. For example, VIME

[52] uses the error of environment dynamic prediction, and RND [55] uses the error of

predicting the output of a randomly initialized neural network. However, although many

of these methods show improved sample efficiency, the actual benefit from them are limited

as they do not incorporate any prior knowledge of the environment. Also, as we consider

the safety issues for many real world robotic tasks, there might be more states which the

agent should avoid than the states which the agent should be encouraged to explore.

2.2 Handling Distribution Shift in Imitation Learning

In contrast to RL, imitation learning (IL) does not require a pre-defined reward signal but

learns by imitating the demonstrations from experts such as humans [56]. The simplest IL

method is Behavioral Cloning (BC), where the the policy is learned directly from expert

demonstrations via supervised learning. Although BC has been applied successfully in tasks

like autonomous driving [57][58], it is prone to compounding errors that lead to distribution

mismatch between states visited by the policy and by the demonstrations [3]. In other

words, small errors in the policy cause the agent to deviate from the training distributions,

making future errors more likely. In this section, we briefly review the main methods for

imitation learning that address this distribution shift problem.

Ross et al. [3] proposed DAGGER that addressed the distribution shift problem by

combining BC with dataset aggregation. In DAGGER, the policy is executed to generated

a certain number of trajectories, and the demonstrator is then asked for on-line corrections

to the off-course states. After that, the corrected data is added to the training dataset so

that the training distribution matches the test distribution. There are a few drawbacks of

this method. First, it requires access to the demonstrator throughout the training process,

which is not desired or possible in many situations. Second, although DAGGER solves the

distribution shift problem, it still requires much more demonstrations when compared to

other IL methods proposed concurrently or later, which will be reviewed below. Third,

there is no direct way to mark a certain state as bad or undesirable, and the demonstrator

may be asked to provide demonstrations at states that are not likely to be visited normally.

Another popular IL method is Inverse Reinforcement Learning (IRL) whose goal is
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to infer the underlying reward function from the demonstrated behavior [59]. Maximum

Entropy IRL (MaxEnt IRL) [60], for example, models the demonstrations with a Boltzmann

distribution based on a learned cost function cθ(τ) parametrized by θ:

pθ(τ) =
1

Z
exp(−cθ(τ))

where τ = {s1, a1, s2, a2, ...} is a trajectory and the partition function Z is the integral of

exp(−cθ(τ)) over all possible trajectories. The parameters θ are optimized to maximize the

likelihood of the demonstrations. However, estimating the partition function Z is computa-

tionally difficult for large, continuous domains. IRL algorithms typically alternate between

updating the cost function cθ(τ) and running RL to find the optimal policy with respect to

the current cθ(τ).

Recently, Ho & Ermon [4] and Finn et al. [61] suggested that GANs can be viewed

as a sample-based algorithm for the MaxEnt IRL problem. The method presented in Ho

& Ermon [4], known as Generative Adversarial Imitation Learning (GAIL), uses the ad-

versarial structure of GAN and trains a policy to match the state-action distribution in

expert demonstrations. This method simultaneously learns the policy and the reward func-

tion that is implicit within the discriminator, and has been successfully applied to various

control tasks in the OpenAI Gym Mujoco environments [18]. There are several algorithms,

such as AIRL [5] and DAC [6], that use similar adversarial structure as GAIL, and we refer

this class of methods as Adversarial Imitation Learning (Adversarial IL).

Both IRL and Adversarial IL, though already leverage RL in their learning process, are

considered to be imitation learning because they do not use a pre-defined reward function

that indicates the agent’s performance. This lack of indication causes the performance

of a learned policy to be limited by the performance of demonstrations. In real world

robotic systems, optimal demonstrations are difficult to obtain due to system noises and

human capacities. In the following section, we review some methods that not only learn

from demonstrations but also make use of a pre-defined reward function to achieve higher

performance than the demonstrations.

2.3 Overcoming Demonstration Sub-Optimality via Combined

RL and IL

Designing a dense, informative reward function is difficult for most tasks in robotics, but

a sparse reward that only indicates the task objective is normally easy to provide. For

example, for object insertion tasks [8], it is sufficient to give a reward of 0 when the object is

inserted and -1 otherwise. The lack of information in guiding the agent towards the objective

can be compensated by expert demonstrations in several ways, such as initializing the policy

using IL, learning guided exploration bonuses from demonstrations, and augmenting the
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training data for off-policy methods.

Initializing the policy via IL and then fine-tuning with RL is the simplest way to com-

bine and benefit from both RL and IL, and it has been successfully applied to real world

robotic tasks [9]. Moreover, the learned policy will not be biased towards demonstrated

actions so that this method does not suffer from sub-optimal demonstrations. However, the

effectiveness of this method can be limited because, at early stage of RL, bad experiences

may be collected due to the distribution drift problem [3] and these experiences can destroy

initialization of the policy. Reward shaping, which our method builds upon, is equivalent to

Q-value initialization as discussed by Wiewiora et al [12], because the shaping potential bi-

ases the Q-value by exactly the same of its amount. Initializing the Q-value function should

be preferred over policy initialization because it does not suffer from bad experiences. Prior

work most closely related to ours is [11], which also incorporates demonstrations via reward

shaping. However, their method is limited to low dimensional state space and discrete action

space, and thereby does not apply to most robotic tasks. Our method uses deep genera-

tive models to represent shaping potential so that it can scale up to high-dimensional state

and action spaces. In addition, we use off-policy actor-critic methods to handle continuous

action spaces.

The second idea of combining RL and IL is to use demonstrations as an augmented

dataset for RL, as done in [8][10][62]. However, this idea has to combine with other IL

and RL tricks, such as importance sampling [63][64], because otherwise the augmented data

will not be helpful due to errors introduced by Q-value extrapolation [65]. Our method also

adds demonstrations to the replay buffer. Unlike [8][10], we assume that the demonstrations

contain only state-action pairs without corresponding rewards and subsequent states, which

is a more realistic assumption for demonstrations generated for real-world robotic tasks.

The third idea is to have a hybrid learning objective from both RL and IL, as used

in [7][10][66]. Rajeswaran et al. [7] combined the two objectives by simply updating the

policy via a weighted sum of the policy optimization loss and a BC loss, while Zhu et al. [66]

did it by combining the pre-defined reward function with a learned reward function from

demonstrations via Adversarial IL. The problems with these methods are 1) the relative

weighting between the RL and IL objectives is hard to tune, and 2) the learned policy will be

biased towards demonstrated behaviors, which might be suboptimal. Nair et al. [10] used

the same way of combining the two objectives as [7], but introduced Q-Filter to handle sub-

optimal demonstrations, where they only kept the IL loss for which the demonstrated action

has higher estimated Q-value than the action returned by the policy. However, we show

that Q-filter may not only filter bad demonstrations but also filter good demonstrations

due to Q-value estimation error, and thereby limit the benefit from the IL objective.



Chapter 3

Background

3.1 Off-Policy Actor-Critic Algorithms for Continuous Con-

trol

We consider an infinite-horizon Markov Decision Process (MDP), which is described by a

tuple M = (S,A, T ,R, γ), where S is the state space, A is the action space, T (st+1|st, at)
is the transition probability, R(st, at, st+1) ∈ R is the reward function, and γ ∈ (0, 1] is the

discount factor [38]. At each discrete time step t with a given state st ∈ S, the agent selects

an action a ∈ A with respect to its policy π : S → A, receiving a reward r and the new

state of the environment st+1 ∈ S. The return at time t, Rt, is defined as the discounted

sum of reward starting from time t: Rt =
∑T

i=t γ
(i−t)r(si, ai).

The goal of ordinary RL is to find a policy π that maximizes the expected return:

J(π) = Esi∼pπ ,ai∼π [R0] = Esi∼pπ ,ai∼π

[
T∑
t=0

γtr(st, at)

]
(3.1)

where pπ is the discounted state visitation distribution of policy π. In actor-critic style

methods, the policy is also called the actor, and is updated through an action-value function

Q, known as the critic, which describes the expected return after taking an action at state

st and following policy π:

Qπ(st, at) = Eri≥t,si>t∼ρπ ,ai>t∼π[Rt|st, at] (3.2)

We consider that both the actor and the critic are represented by deep neural networks

where π = πφ(s), parametrized by φ, and Q = Qθ(s, a), parametrized by θ. The critic Qθ

can be learned using temporal difference learning [67] based on the Bellman equation [38]

that specifies the following relationship between (st, at) and (st+1, at+1):

Qπ(st, at) = r + γEst+1,at+1 [Qπ(st+1, at+1)] where at+1 ∼ π(st+1) (3.3)

9
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In case where the policy πφ is deterministic and the action space is continuous, πφ can

be updated based on the Deterministic Policy Gradient Theorem [40]:

Jπ(φ) = Es∼pπ
[
Q(s, a)|a=π(s)

]
(3.4)

∇φJπ(φ) = Es∼pπ
[
∇aQπ(s, a)|a=π(s)∇φπφ(s)

]
(3.5)

To address the over-estimation problem in Q-value approximation, Fujimoto et al. pro-

posed in their TD3 algorithm [15] to use a clipped double Q-learning method coupled with

target policy smoothing, which produces the following objective for Qθ:

y = rt+γ min
i=1,2

Qθ′i(st+1, πφ′(st+1)+ εTD3) with εTD3 ∼ clip(N (0, σTD3),−cTD3, cTD3) (3.6)

Qθ′1 and Qθ′2 are frozen target networks that make the objective y be fixed over multiple

updates. Selecting the smaller Q estimation from two target networks alleviates the over-

estimation problem in Q-learning, and the clipped Gaussian noise εTD3 added to the target

policy π′φ avoids overfitting to narrow peaks in value function estimation. The loss function

for Qθ is then:

JQ(θ) = E(st,at,rt,st+1)∼B
[
(Qθ(st, at)− y)2

]
(3.7)

where B is the replay buffer.

An alternative to the above formulation is Maximum Entropy RL discussed in Ziebart et

al. [42], where the goal is to maximize both the expected return and entropy of the policy:

JME = Esi∼pπ ,ai∼π

[
T∑
t=0

γtr(st, at) + αH(π(·|st))

]
(3.8)

Given this objective, the Bellman target and loss function for Qθ are as follows:

yME = rt + γ Eat+1∼πθ(st+1)

[
min
i=1,2

Qθ′i(st+1, at+1) + αlogπ(at+1|st+1)

]
(3.9)

JME
Q (θ) = E(st,at,rt,st+1)∼B

[
(Q(st, at)− y)2

]
(3.10)

For continuous action spaces, Haarnoja et al. proposed in their SAC algorithm [16] to

use a differentiable stochastic policy designed to be a squashed Gaussian:

πφ = tanh(µφ, σφ � ξ) where ξ ∼ N (0, I) (3.11)

and the policy is updated again via gradient descent with the reparameterization trick

[68]. The policy is reparametrized using a neural network transformation:

at = fφ(ε; st) with ε ∼ N (0, I) (3.12)



CHAPTER 3. BACKGROUND 11

and the learning objective for πφ and its approximated gradient are:

JME
π (φ) = Es∼B,ε∼N [αlogπφ(fφ(ε; s)|s)−Q(s, fφ(ε; s))] (3.13)

∇̂φJME
π (φ) = ∇φlogπφ(â|s) + (∇âlogπφ(â|s)−∇âQ(s, â))∇φfφ(ε; s) (3.14)

where â is evaluated at fφ(ε; s).

3.2 State-Action, Potential-Based Reward Shaping

Reward shaping, introduced by Ng et al. [43], refers to transforming a MDP M =

(S,A, T ,R, γ), with a sparse reward function to a new MDP M̃ = (S,A, T , R̃, γ) with

a relatively denser and more informative reward function. The transformation is done as

follows:

r̃t(st, at, st+1) = r(st, at, st+1) + γΦ(st+1)− Φ(st) (3.15)

The function Φ is a state-based shaping potential, and the shaping reward f is the

discounted difference of potentials at time t and t+ 1:

f(st, st+1) = γΦ(st+1)− Φ(st) (3.16)

Under this transformation, the optimal action-value functions between the original MDP

M and the transformed MDP M̃ satisfies the following equation:

Q∗(s, a) = Q̃∗(s, a) + Φ(s) (3.17)

Since the difference between the original and transformed action-value functions do not

depend on the actions at any state s, an optimal policy corresponding to Q∗(s, a) satisfies

π∗(s) = argmax
a

Q∗(s, a) = argmax
a

Q̃∗(s, a) = π̃∗(s) (3.18)

which implies that the optimal policy for M̃ will also be optimal for M.

Wiewiora et al. [12] extended state based reward shaping to state-action based reward

shaping, with the modified shaping reward being:

r̃(st, at, st+1) = r(st, at, st+1) + f(st, at, st+1) = r(st, at, st+1) + γΦ(st+1, at+1)− Φ(st, at)

(3.19)

, which gives rise to the following action-value function:

Q∗(s, a) = Q̃∗(s, a) + Φ(s, a) (3.20)

In this case, since the shaping potential also depends on actions, the optimal policy

corresponding to the transformed MDP M̃ is no longer guaranteed to be the optimal one
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for the original MDP M. However, based on Equation (3.20), we can still find the optimal

policy for M, which is defined to be

π∗(s) = argmax
a

[
Q̃∗(s, a) + Φ(s, a)

]
(3.21)

3.3 Flow Based Generative Models - Normalizing Flows

Normalizing Flow is a popular class of generative model, which composes a sequence of

invertible and differentiable mappings (i.e. bijections) to transform a simple probability

distribution into a more complex distribution via the change-of-variables formula for prob-

ability distributions. Given a random variable y ∈ Rn with z ∼ p(z) = N (0, In), and an

differentiable, invertible mapping f : Rn → Rn with y = f(z), the change of variables

formula is defined as:

p(y) = p(z)

∣∣∣∣det

(
∂f−1

∂z

) ∣∣∣∣ = p(z)

∣∣∣∣det

(
∂f−1

∂z

) ∣∣∣∣−1 (3.22)

A normalizing flow is obtained by applying a series of such mappings fk, k ∈ 1, ...,K, as

first introduced by Rezende and Mohamed [14]:

zK = fK ◦ fK−1 ◦ ... ◦ f1(z0), z0 ∼ p0(z0) (3.23)

pK(zK) = p0(z0)
K∏
k=1

∣∣∣∣det

(
∂f−1

∂z

) ∣∣∣∣−1 (3.24)

The major difference between each kind of normalizing flow is the way it parametrizes

the bijective functions fi(z). In our case, we consider a particular type of parametrization

proposed in Papamakarios et al. [69] named Masked Autoregressive Flow (MAF), which

is derived from the following autoregressive model whose conditionals are parametrized as

Gaussians:

p(zi|z1:i−1) = N (zi|µi, (exp αi)2) where µi = fµi(z
1:i−1), αi = fαi(z

1:i−1) (3.25)

fµi and fαi are scalar functions represented by a single neural network with masked entries,

fψi = (fµi , fαi), where ψ represents the parameters of the neural network. The neural

network outputs both mean and log standard deviation of the ith conditional given z1:i−1

where i ≤ n. With this model, the bijective function is defined by the following recursion:

zik = µi + zik−1exp αi (3.26)

The primary reason that we consider this bijective function is because its autoregressive

structure makes the Jacobian of f−1 a triangular matrix so that the absolute determinant
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can be easily computed as follows:∣∣∣∣det

(
∂f−1ψ
∂z

)∣∣∣∣ = exp

(
−
∑
i

αi

)
(3.27)

Due to this advantage, the log likelihood of any observed data can be computed efficiently

based on Equation (3.24). Moreover, the training criterion of flow-based generative models

is simply the negative log-likelihood (NLL) over the training dataset D.

L1f,D(ψ) = −
∑
zK∈D

K∑
k=1

log

∣∣∣∣det

(
∂f−1ψk
∂zk−1

)∣∣∣∣ (3.28)

Because of this criterion, an optimized normalizing flow will have high density on data

that is close to the training distribution, and low density on data away from that distribu-

tion.

In practice, a regularization term is sometimes added to control the smoothness of the

transformed distribution. In our case, we choose to use the norm of the gradient of the

learned log density with respect to input zK :

L2f,D(ψ) =
∑
zK∈D

||∇zK log pK(zK)||2 (3.29)

The final cost function is then

Lf,D(ψ) = L1f,D(ψ) + ηNF L2f,D(ψ) (3.30)

where ηNF is a hyper-parameter controlling the weight of the regularization term.

3.4 Generative Adversarial Networks

Another popular class of generative model is the family of Generative Adversarial Networks

(GANs) [13]. A GAN composes two deep neural networks, the generator Gφ, parametrized

by φ, and the discriminator Dψ, parametrized by ψ. The discriminator D is learned to

differentiate samples generated by G and from the true distribution. The generator G is

trained to fool the discriminator. Let pt be the true distribution of a random variable x and

pg be the generated distribution from G, the training of GAN is a minimax optimization

process with the goal being to minimize the distance between pt and pg.

There are multiple methods of measuring the distance between two distributions, and

each method leads to a different minimax objective. In our case, we consider Wasserstein

GAN (WGAN) proposed by Arjovsky et al. [70], which uses the Earth Mover’s distance

(or Wasserstein-1 distance) to compare pt and pg. The minimax objective of WGAN is
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constructed based on the Kantorovich-Rubinstein duality :

L1(φ, ψ) = min
Gφ

max
Dψ∈F

Ex∼pt [Dψ(x)]− Ex̃∼pg [Dψ(x̃)] (3.31)

where F is the set of 1-Lipschitz functions and pg is the distribution defined by x̃ = G(z)

with z ∼ N (0, I). To enforce the 1-Lipschitz constraint on D, we use the method in

Gulrajani et al [71], which imposes a soft version of the constraint with a penalty term on

D’s gradient norm

max
Dψ

Ex̂∼px̂
[
(||∇x̂Dψ(x̂)|| − gpGAN)2

]
(3.32)

where x̂ = εx + (1 − ε)x̃ with ε ∼ U [0, 1], x ∼ pt, x̃ ∼ pg, and gpGAN ∈ [0, 1] is the

target norm of the gradient. Combining this soft constraint with the minimax objective,

the resulting learning objective is:

min
Gφ

max
Dψ

Ex∼pt [Dψ(x)]− Ex̃∼pg [Dψ(x̃)]− ηGAN
[
(||∇x̂Dψ(x̂)|| − gpGAN)2

]
(3.33)

where ηGAN is a hyper-parameter controlling the weight of the soft constraint.

It is important to note that Equation (3.33) also trains the discriminator to output

higher values on samples from the true distribution than on samples from the generated

distribution, which inspired us to develop our GAN based shaping potential discussed in

4.2. The main reason that we choose Wasserstein GAN over other type of GANs is because

the gradient penalty term in Equation (3.32) can be used to control the smoothness of the

shaping potential as it regularizes the gradient of the discriminator output with respect to

its input.



Chapter 4

RL from Demonstration via

Shaping through Generative

Models

In this chapter, we describe how we combine RL and IL via reward shaping through genera-

tive models. First, we present the two forms of shaping potentials, one based on normalizing

flows and the other based on GANs. Then, we derive the new learning objectives of two

popular off-policy actor-critic algorithms: SAC and TD3 using reward shaping. However,

the shaping potentials considered in our case are agnostic to the RL algorithm used. We

choose these two algorithms because they are the state-of-the-art at the time of writing,

and they are representative off-policy actor-critic algorithms: TD3 learns a deterministic

policy, while SAC learns a stochastic policy. Finally, we list other changes to SAC and TD3

that we make to facilitate learning from demonstrations and sparse rewards.

4.1 Assumptions and Preliminaries

In this work, we consider systems with unknown dynamics and a sparse reward function that

only indicates task completion. We use the infinite-horizon MDP formulation described by

a tuple M = (S,A, T ,R, γ), as outlined in 3.1. Our goal also remains the same: finding a

policy π that maximizes the expected return J(π) in Equation (3.1) for ordinary RL, or the

expected return and entropy of the policy JME(π) in Equation (3.8) for Maximum Entropy

RL.

We assume that the tasks are iterative in nature with a fixed, known goal set G ⊂ S. This

is common in many manipulation tasks, such as object insertion, placement and assembly.

The reward function that specifies task completion is defined to be: r(s, a) = −1GC (s),

where GC is the complement of G under S. We define task success as convergence to G
within a pre-defined time limit T measured in terms of simulation steps. T is sometimes

15
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called episode length or task horizon. Note that given this definition of the reward function,

the problem we consider is equivalent to the minimum-time control problem in optimal

control because the agent gets higher return by converging to the goal set faster. Though

our method is also applicable to other choices of sparse or dense reward functions, we

focus on this particular type of reward because it is common for robotic tasks and best

demonstrates the effectiveness of our method.

We further assume that a set of optimal or sub-optimal demonstrations D = {(si, ai), i =

1...N} is given beforehand. The demonstrations can be provided, for example, from human

teleoperation or a hard-coded policy. Note that our choice of demonstrations are differ-

ent from some other works on RL from Demonstration, such as [10], which assume the

demonstrations are in the form (s, a, r, s′). Having access to the reward signal in demon-

strations means that one can learn both the policy and the action-value function using

demonstrations. However, we argue that getting access to the reward is only possible when

the demonstrator is executing the same task as the one to be learned by the agent, so that

it does not allow easy extension to multi-task learning or different state spaces between the

demonstrator and the agent. Therefore, we stick with the form (s, a) for our demonstrations

to preserve extensibility and do not train the action-value function using data in D.

4.2 Shaping Potential Based on Generative Models

The main idea of state-action based reward shaping is to construct a informative shaping

potential that gives higher values for desired state-action pairs, which is assumed to be in

the demonstrations. We notice that both the density estimation from a normalizing flow

and the output from the discriminator of a GAN trained on the demonstrations D match

this criteria.

4.2.1 Shaping Potential Based on Normalizing Flows

Given a normalizing flow fψ∗ that has been optimized on demonstrations D with zK =

(s, a) ∈ D, we define the shaping potential based on the density estimation of fψ∗ on (s, a)

as follows:

ΦNF
ψ∗,kNF,bNF(s, a) = kNF log (pψ∗(s, a) + bNF) (4.1)

where kNF ∈ R+ is a hyper-parameter that controls the scale of the shaping potential, and

bNF is a small constant that prevents the log density from reaching negative infinity.

To train the normalizing flow on demonstration D, we use mini-batch gradient descent

with Adam optimizer [72]. The hyper-parameters used for training the normalizing flow are

listed in Appendix A.
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4.2.2 Shaping Potential Based on Generative Adversarial Networks

Given a GAN that has been trained on demonstrations D with x = (s, a) ∈ D, and its

discriminator Dψ∗ , we define the shaping potential based on the output of Dψ∗ as follows:

ΦGAN
ψ∗,kGAN,bGAN(s, a) = kGAN(Dψ∗(s, a)− bGAN) (4.2)

where kGAN ∈ R+ is again the hyper-parameter that controls the scale of the shaping

potential, and bGAN is a constant shift that is set to the mean output of Dψ∗ on D.

In terms of training the GAN, we follow the same process proposed in [70] where both

Gφ and Dψ are learned with Adam optimizer [72] while Gφ is updated after every nGAN
critic

times of Dψ update. Pseudo-code of the training process is shown in Algorithm 1, and

the hyper-parameters for GAN training and GAN based shaping potentials are listed in

Appendix A

Algorithm 1 Learn a Shaping Potential Based on WGAN-GP [70]

Require: The gradient penalty coefficient ηGAN, the number of discriminator iterations
per generator iteration nGAN

critic , the batch size m, Adam hyper-parameters αGAN, βGAN
1 ,

βGAN
2

Require: Initial discriminator parameters ψ0, initial generator parameters φ0.
1: while φ has not converged do
2: for t = 1, ..., nGAN

critic do
3: for i = 1, ...,m do
4: Sample demonstration data x = (s, a) ∼ D, latent variable z ∼ p(z), ε ∼
U [0, 1].

5: x̃← Gφ(z)
6: x̂← εx+ (1− ε)x̃
7: L(i) ← Dψ(x̃)−Dψ(x) + ηGAN(||∇x̂Dψ(x̂)||2 − gpGAN)2

8: ψ ← Adam(∇ψ 1
m

∑m
i=1 L

(i), ψ, αGAN, βGAN
1 , βGAN

2 )

9: Sample a batch of latent variables {z(i)mi=1} ∼ p(z).
10: φ← Adam(∇φ 1

m

∑m
i=1−Dψ(Gφ(z)), φ, αGAN, βGAN

1 , βGAN
2 )

4.3 Updated Learning Objectives for SAC and TD3

We follow the state-action based reward shaping method in [12], and incorporate Equa-

tion (3.20) into the Bellman equation (Equation (3.3)). The transformed Bellman equation

is then

Q̃π(st, at) + Φ(st, at) = r + γEst+1,at+1 [Q̃π(st+1, at+1) + Φ(st+1, at+1)], at+1 ∼ π(st+1)(4.3)

Q̃π(st, at) = r − Φ(st, at) + γEst+1,at+1 [Q̃π(st+1, at+1) + Φ(st+1, at+1)] (4.4)

For TD3, the transformed target of the action-value function Q̃ and its corresponding
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loss are:

ỹ = rt − Φ(st, at) + γ (min
i=1,2

Qθ′i(st+1, πφ′(st+1) + εTD3) + Φ(st+1, πφ′(st+1) + εTD3))(4.5)

J
Q̃

(θ) = E(st,at,rt,st+1)∼B

[
(Q̃θ(st, at)− ỹ)2

]
(4.6)

where εTD3 ∼ clip(N (0, σTD3),−cTD3, cTD3). The policy loss is:

Jπ(φ) = Es∼pπ
[
−Q̃(s, a)− Φ(s, a)|a=π(s)

]
(4.7)

Similarly, for SAC, the transformed target and loss for Q̃ are:

ỹME = rt − Φ(st, at) (4.8)

+γ Eat+1∼πθ(st+1)

[
min
i=1,2

Q̃θ′i(st+1, at+1) + Φ(st+1, at+1) + αlogπ(at+1|st+1)

]
(4.9)

JME
Q̃

(θ) = E(st,at,rt,st+1)∼B

[
(Q̃(st, at)− ỹ)2

]
(4.10)

And the new loss for policy is:

JME
π (φ) = Es∼B,ε∼N

[
αlog πφ(fφ(ε; s)|s)− Q̃(s, fφ(ε; s))− Φ(s, fφ(ε; s))

]
(4.11)

4.4 Other Changes to TD3 and SAC that Facilitate Learning

from Demonstrations and Sparse Rewards

In 4.2 and 4.3, we present the shaping potentials based on two types of generative models and

the updated learning objectives of TD3 and SAC with reward shaping. Since reward shaping

does not alter other part of the RL training process, one can use exactly the same learning

procedure outlined in the original TD3 and SAC paper [15][16] with the updated learning

objectives to incorporate the shaping potentials learned from demonstrations. However,

for complex tasks with high dimensional state-action space and/or long task horizon, we

suggest to use the following tricks to facilitate learning from demonstrations and sparse

rewards. Note that the following modifications 1) do not make any assumptions additional

to those discussed in 4.1; 2) do not bias the learned policy towards demonstrated behaviors.

1) Mixing 1-step and n-step return

Using a mix of 1-step and n-step return when updating the critic function helps propagate

the Q-values along the trajectories of n steps. The idea is to minimize the difference be-

tween the action-value at (st, at) and the return of the rollout (st+i, at+i, rt+i, st+i+1)
n−1
i=0

with st+i+1 = P (·|st+i, at+i) following a policy π close to the current policy πφ(s). The

Bellman objective for n-step return ỹn can be easily derived from the Bellman equation
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and is similar to ỹ in Equation (4.5):

ỹn =
n−1∑
i=0

rt+i−Φ(st, at)+γn (min
i=1,2

Qθ′i(st+n, πφ′(st+n)+εTD3)+Φ(st+n, πφ′(st+n)+εTD3))

(4.12)

2) Using Demonstrations as an Augmented Dataset

In addition to the RL rollout experiences, we can use the state-action pairs from the

demonstration set D to train the policy in TD3 and SAC. Note that, unlike [8], we do

not load demonstrations into the RL replay buffer B but use D as a separate replay

buffer. When updating the policy π, we sample a fixed number of (s, a) pairs from both

B and D, which ensures that we train π on the demonstrations throughout the entire

RL training process.

3) Initializing the policy via BC

Before training the policy π using TD3 or SAC with the updated learning objectives,

we can first initialize the policy using BC. For deterministic policy, such as the policy

learned via TD3, we use the MSE criterion:

JBC
π (φ) =

∑
(s,a)∈D

(πφ(s)− a)2 (4.13)

For stochastic policy, such as the policy learned via SAC, we use the negative log likeli-

hood loss as our training criterion:

JBC
π (φ) =

∑
(s,a)∈D

− logp(πφ(s) = a) (4.14)

4) Ensemble of GAN/Normalizing Flow Based Shaping Potential

Instead of using the shaping potential that comes from a single GAN or normalizing flow,

we consider using an ensemble of shaping potentials based on K models of the same

type. All models learn from the same demonstrations but are initialized differently.

The resulting shaping potential is the average output from all K models: φψ∗,k,b =
1
K

∑K
i=1 φψ∗i ,k,b

5) Scheduled Decay on the Scale of the Shaping Potential

For experiments with long-horizon tasks, we consider replacing the scaling parameter

kNF/GAN with a decreasing sequence k
NF/GAN
t such that: limt→∞ k

NF/GAN
t = 0. Using

this decreasing sequence means that we gradually switch from optimizing the action-

value function Qθ for the transformed MDP M̃ to the original MDP M. We found

that this resulted in policy with higher performance despite that the learned policy via

RL should not be affected by the shaping potential in theory. We compare experimental
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results with and without the scheduled decay in 5.7 and provide more detailed discussions

there.

4.5 Algorithm Summary and Pseudo-Code

To summarize, our algorithm combines RL and IL through state-action based reward shap-

ing. We proposed two forms of shaping potentials based on two types of deep generative

models - GAN and normalizing flow, and the shaping potentials are learned from a modest

set of demonstrations. We also derived the new learning objectives for TD3 and SAC incor-

porating the shaping potentials. Moreover, we made a few other changes to the standard

TD3/SAC training flow to help learn from demonstrations and sparse rewards, including a

mix of 1-step and n-step return, BC pre-training, sampling from the demonstrations, etc.

The pseudo-code of our algorithm is shown in Algorithm 2, and the hyper-parameters used

in our experiments are listed in Appendix A.
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Algorithm 2 TD3/SAC from Demonstration via Reward Shaping

1: Require: Optimal/sub-optimal demonstrations D = {(si, ai), i = 1...N}

Offline Pre-training

2: Train K shaping potentials based on normalizing flows or GANs: Φ
GAN/NF
ψ∗i ,k,b

(s, a), i =

1, ...,K, from Eqn. 4.1 or 4.2.

3: Use the average of the shaping potentials: φ
GAN/NF
ψ∗,k,b = 1

K

∑K
i=1 φψ∗i ,k,b

4: Given MDP M = (S,A, T , r, γ), Consider MDP M̃ = (S,A, T , r̃, γ) from Eqn. 3.19
with
r̃t = r(st, at, st+1) + γΦψ∗,k,b(st+1, at+1)− Φψ∗,k,b(st, at)

Off-Policy Actor-Critic Training with Shaping and BC Initialization
5: Initialize actor and critic networks for M̃ : Q̃θ1 , Q̃θ2 , πφ
6: Pre-train πφ on D using BC with MSE criterion (Eqn. 4.13) for TD3, or NLL criterion

(Eqn. 4.14) for SAC.
7: Initialize target networks θ

′
1 ← θ1, θ

′
2 ← θ2, φ

′ ← φ
8: Initialize 1-step replay buffer B and n-step replay buffer Bn to empty.
9: while not converged do

10: for episode e = 1...E do
11: for step t = 1...T do
12: Sample action a from πφ(s), observe reward r and new state s′ from M.
13: Store transition tuple (s, a, r, s′) in both B and Bn.

14: for batch b = 1...B do
15: Sample mini-batch Bb and Bnb of (s, a, r, s′) from B and Bn, respectively.
16: Sample mini-batch Db of (sd, ad) from D
17: Update critics from Eqn. 4.6 for TD3 or Eqn. 4.10 for SAC using Bb and Bnb
18: if b mod d then
19: Update policy from Eqn. 4.7 for TD3 or 4.11 for SAC using Bb, Bnb and Db
20: Update target networks:
21: θ′i ← τθi + (1− τ)θ′i
22: φ′ ← τφ+ (1− τ)φ′

23: Clear n-step replay buffer Bn
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Experiments

In this section, we present experimental results and discussions of comparing the TD3

version of our method, named TD3+Shaping, against several RL and IL methods on simu-

lated robotic control and manipulation tasks. Our evaluation metrics are sample efficiency,

episode return and hyper-parameter sensitivity. In particular, we answer the following

questions:

1. What does the learned shaping potential look like? How do we know if it will be helpful

or not?

2. Will our method bias the learned policy when sub-optimal demonstrations are given?

Does our method get higher return than pure BC methods or RL+IL methods with a

hybrid objective?

3. Given either optimal or sub-optimal demonstrations, does our method outperform better

than pure RL methods in terms of sample efficiency?

4. Is our method sensitive to any hyper-parameter, which makes it difficult to tune?

This section is organized as follows: In 5.1, we list the baseline RL and IL algorithms to

be compared against in our experiments. 5.2 and 5.3 describe the tasks and how the optimal

and sub-optimal demonstrations are generated. Then, in 5.4, we consider a toy 2D reaching

task and show how to visualize and evaluate the learned shaping potentials, which answers

the first question above. After that, in 5.5, we visualize the sub-optimal demonstrations

of a 2D peg insertion task and compare the resulting trajectory generated by the learned

policies from our method and RL+IL methods that assume optimal demonstrations. In 5.6

and 5.7, we compare our methods against the baseline algorithms on several manipulation

tasks with varying difficulties. Finally, we conclude our findings and answers to the above

questions in 5.8.

22
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5.1 Baselines

We use the following RL, IL and RL+IL algorithms as our baselines:

1) Pure RL method: Twin Delayed DDPG (TD3) [15]

Note that this is also the underlying RL algorithm of our method.

2) Pure IL method: Behavioral Cloning (BC)

This method uses supervised learning on demonstrations. We will consider learning a

deterministic policy using the MSE criterion in Equation (4.13).

3) RL+IL method via initialization: TD3+BC Initialization

The policy is initialized via BC on demonstrations and fine-tuned using TD3.

4) RL+IL method via a hybrid objective: TD3+BC

Like TD3+BC Initialization, the policy is first initialized via BC on demonstrations.

When training the policy using TD3, we keep the BC objective JBC(π) as a soft regu-

larization term and weigh the TD3 objective in Equation (3.4) using a hyper-parameter

λ:

JTD3+BC
π (φ) = λ JTD3

π (φ) + JBC
π (φ) (5.1)

Since the regularization term biases the policy towards demonstrated actions, we use

multiple value of λ and see its impact on sample efficiency and performance of the

learned policy. In particular, we choose λ to be 1e-1, 1e-2, 1e-3 and 1e-4.

5) RL+IL method via hybrid objective and filtering: TD3+BC+QFilter

This method uses the same learning objective as TD3+BC, but regularization is only

applied to states where the estimated Q-value of the demonstrated action is higher than

the estimated Q-value of the policy output. Q-filter is introduced by Nair et al. in [10].

Note that we only use TD3, BC with MSE criterion and some combinations of the two

as our baseline algorithms. We choose these algorithms because: 1) we use the TD3 version

of our method in all experiments; 2) both TD3 and BC with MSE criterion are simple to

implement and are part of our method; 3) both algorithms work with deterministic policy

so that they can be combined directly without change to the representation of the policy.

However, as we have discussed in section 4.3, one can easily learn a stochastic policy using

the SAC version of our method. Furthermore, there are many other RL and IL baseline

algorithms not considered in this work, such as IRL methods [42][59] and adversarial IL

methods [4]. Learning stochastic policies using SAC+Shaping and comparing our method

to other RL and IL methods are left for future works.
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5.2 Specification and Categorization of Tasks

The tasks used in our experiments are listed in Table 5.1. Except the Reach-2D task, all

tasks are constructed based on the OpenAI Gym [18] and MetaWorld (MW) [17] API for

Robotics environments. We categorize the tasks according to its horizon, which refers to the

number of environment steps between each reset and is chosen to be about 3 times greater

than the minimum number of steps taken to reach the goal state. We categorize the tasks

this way because all of our tasks are state-based, and we notice that task horizon is the

determining factor of the performance of our method in terms of both episode return and

hyper-parameter sensitivity. However, one should note that the difficulty of a task is not

solely dependent on the task horizon (or the minimum number of steps taken to reach the

goal). There are many other factors affecting the difficulty of a task, such as the dimension

of state and action spaces and whether or not objects & obstacles are involved.

For reward function design, as we have mentioned in 4.1, we always use sparse rewards

that only indicate task completion: r(s, a) = −1GC (s), which yields a control policy that

minimizes time taken to reach the goal set G. We refer the reader to the original papers of

OpenAI Gym [18] and MetaWorld [17] for the precise definition of the goal set G of each

task. Generally speaking, the goal set is the collection of states close to the task’s goal

state, and the goal state can be easily inferred from the task name. For example, for a peg

insertion task, G contains states where the peg is inserted in the hole with a small tolerance.

We consider a task as successfully completed if the agent reaches and stays in G until the

end of the episode.

Task Name dim(S) dim(A) Task Horizon

Toy Tasks

Reach-2D 2 2 20

Gym-PegInsertion-2D 6 4 40

Short-Horizon Tasks

Gym-PegInsertion 6 4 40

Gym-PickAndPlace 25 4 40

Long-Horizon Tasks

MW-PressButton 9 4 150

MW-DrawerClose 9 4 150

MW-Hammer 9 4 150

Table 5.1: Specification of tasks in our experiments including state space S, action space
A, and task horizon. We divide the tasks into three categories. Toy tasks are used for
illustrative purposes. Short-Horizon and Long-Horizon tasks are used for comparing our
method with the baseline algorithms in 5.1. See Appendix B for the visualization of the
simulated manipulation tasks.
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5.3 Generating Demonstrations

All algorithms that involve IL are given the same demonstrations, which can be optimal,

near-optimal or sub-optimal. The demonstrations normally consist of multiple trajecto-

ries that successfully complete the task. As discussed above, given the task completion

reward, the optimal policy should spend minimum time reaching the goal set G. In prac-

tice, it is very difficult to have such a policy that provides optimal demonstrations using a

hard-coded script or human teleoperation. Therefore, we first generate some sub-optimal

demonstrations using a hard-coded policy. Then, we run TD3+BC and use the learned pol-

icy to generate better demonstrations iteratively until the performance of the policy stops

improving.

For sub-optimal demonstrations, we mainly consider the case where the demonstrated

trajectories do not achieve the RL goal of the task, i.e. minimize time taken to reach G,

but still successfully complete the task. We generate sub-optimal demonstrations through

hard-coded policies for all tasks. In particular, we show in 5.5 what the sub-optimal demon-

strations may look like and how it affects the learned policies using our method and other

RL+IL methods.

Moreover, it is worth mentioning that the demonstrations can be sub-optimal for other

reasons, such as noise in measurement or actuation. One can approximate noise in actu-

ation by adding Gaussian noise to the output of an optimal policy when generating the

demonstrative trajectories. Similarly, one can add Gaussian noise to the policy’s inputs to

simulate measurement noise. We did not focus on sub-optimal demonstrations due to noise

in our experiments because we found that they had much less impact on the optimality

of the learned policy using any RL+IL method, unless when too much noise was added in

which case none of the algorithms converged.
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5.4 Illustrative Example 1: Visualizing and Evaluating Shap-

ing Potentials

Figure 5.1: The Reach-2D task used for visualizing the shaping potentials based on GANs
and normalizing flows. The plot on the left shows the task state at t = 2 where the point
mass (in red) has not reached the goal position (in green) and thereby gets a reward -1.
The plot on the right shows the environment state at t = 13 where the point mass reaches
the goal and gets a reward 0.

To evaluate our GAN and normalizing flow (NF) based shaping potentials, we created a

toy reaching task in a 2D environment, named Reach-2D, as shown in Figure 5.1. The

goal of the task is to control a point mass (red) to reach a target position (green), which is

fixed at g = (0, 0) in this experiment. The agent observes the current position of the point

mass s = (s1, s2) and specifies the target velocity v = (v1, v2) for the mass. The goal set

G is the collection of states centered at the target position (0, 0) with a tolerance of 0.05:

||s− g|| < 0.05.
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Figure 5.2: The learned shaping potentials based GAN and normalizing flow from optimal
demonstrations for Reach-2D. The initial position of the point mass is always (−0.8,−0.8)
and the goal position is kept at (0, 0). As expected, the shaping potentials model the
demonstration data distribution and thereby encourage the agent to reach and stay at the
goal state.

This 2D environment allows us to visualize the learned shaping potentials directly over

the entire state space S given an action a ∈ A. In Figure 5.2, we plot the learned shaping

potentials when the point mass is initialized at s0 = (−0.8,−0.8) and the demonstrations are

optimal. We can see that when setting v = (1.0, 1.0), which is the maximum velocity towards

the target position from (ŝ, ŝ), ŝ < 0, both NF and GAN based shaping potentials assign

higher values to states along the straight line between s0 = (−0.8,−0.8) and g = (0, 0).

When letting v = (0.0, 0.0), both shaping potentials put higher values near g = (0, 0). This

result indicates that the potentials encourage the agent to move towards the target position

and stop after reaching the target, which is consistent with the demonstrated behavior.

We know that at early stage of RL training, the action-value function Q̃, i.e. the critic

in TD3/SAC, is normally close to zero everywhere and the potential Φ outweighs Q̃. So,

according to Equation (3.21), the policy is trained to maximize the output of the shaping

potential and thereby gets biased towards the target g = (0, 0).

For environments with high dimensional state and action spaces, it is not possible to
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visualize the shaping potential directly as in Figure 5.2, so we consider an alternative method

to evaluate the shaping potential. Given a shaping potential Φ trained on demonstration

dataset D, we plot the average output of the shaping potential given the (s, a) pairs in D
perturbed by Gaussian noise ε with zero mean and σ2 variance: {(s, a) + ε | (s, a) ∈ D, ε ∼
N (0, σ2)}. Figure 5.3 shows the relationship between φ and σ2 of the shaping potentials

that we have visualized directly in Figure 5.2. We notice that Figure 5.2 and Figure 5.3

provide very similar information: the learned shaping potentials output higher values given

(s, a) pairs close to those in D. Moreover, Figure 5.3 shows that both shaping potentials are

sensitive to small perturbations to (s, a) in D, i.e when σ2 is small. See Decreasing Region

of the two plots in Figure 5.3. However, the shaping potentials become flat when σ2 gets

large, in which case the inputs are far from the demonstrated (s, a) pairs. See Flat Region

of both plots in Figure 5.3.

Figure 5.3: Plot of the average output from GAN (right) and normalizing flow (left) based
shaping potentials verses (s, a) pairs from in demonstration dataset D perturbed by Gaus-
sian noise N (0, σ2). The shaping potentials drop quickly inside the Decreasing Region and
are almost flat outside this region.

In practice, we found that the width of Decreasing Region strongly affects the perfor-

mance of our method. The reason is that, when Decreasing Region is too narrow, the

shaping potential becomes sparse as it gives different outputs only at states close to the

demonstrations; if Decreasing Region is too wide, the shaping potential becomes too smooth

and the agent may gets distracted by the noise in the action-value function Q̃. Another

important factor that affects the effectiveness of a shaping potential is its scale, which de-

termines the relative weight between the shaping reward and the true reward from the

environment. The hyper-parameters controlling the width of Decreasing Region and scale

of the shaping potentials are the regularizers ηNF/GAN in Equation (3.30)/(3.33) and the
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scaling factors kNF/GAN in Equation (4.1)/(4.2). In Figure 5.4, we show an example of

tuning the hyper-parameters kNF and ηNF of a normalizing flow based shaping potential

trained on optimal demonstrations for Reach-2D. For simple tasks, such as the toy tasks

and short-horizon tasks listed in Table 5.1, we can choose the hyper-parameters kNF/GAN

and ηNF/GAN according to the Φ− σ2 plot. The learned shaping potentials are helpful and

never bias the policy. However, we will discuss in 5.7 that the performance of policy may

become highly sensitive to the scale and shape of the shaping potential for long-horizon

tasks, in which case we cannot determine these hyper-parameters solely from the Φ − σ2

plot.

Figure 5.4: Φ−σ2 plot of normalizing flow based shaping potentials trained with 3 different
choices of the scaling factor kNF and weight on the regularization term ηNF. The empirical
mean is computed from 4 seeds and the error bars represent 1σ standard deviation. The
learned shaping potentials are very consistent across seeds, and the width of the Decreasing
Region can be controlled by the two hyper-parameters.

Finally, we present the results of running baseline algorithms and our method on the

Reach-2D task in Figure 5.5. The demonstrated trajectory is optimal and reaches the goal

state in 7 steps. Since the task is simple and optimal demonstrations are given, we can

see that an optimal policy can be learned from just BC without any help from RL. Both

TD3+BC and TD3+BC+QFilter converged quickly within 20000 steps of exploration. Our

methods, TD3+Shaping (GAN/NF), converged slightly slower but still found the optimal

policy within 40000 steps. However, TD3+BC Initialization only converged on 3/4 seeds,

which is why the green line has low mean but high variance. TD3 was not able to converge

on any seed within 80000 simulation steps’ exploration.
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Figure 5.5: Average episode return vs. simulation steps of our method and the baseline
algorithms on Reach-2D with optimal demonstrations. The empirical mean is computed
from 4 seeds and the error bars represent 1σ standard deviation. Both TD3+Shaping, BC
and TD3+BC(+QFilter) converged to the optimal policy that spends 7 simulation steps to
reach the goal state. Pure TD3 was not able to converge on any seed within 8e4 simulation
steps, while TD3+BC Initialization only converged on 3/4 seeds.
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5.5 Illustrative Example 2: Visualizing and Evaluating Poli-

cies Learned from Sub-Optimal Demonstrations

Figure 5.6: Illustration of our method’s robustness to sub-optimal demonstrations. The left
most figure shows the sub-optimal demonstrations where sub-optimality is introduced by
exaggerating the lift of the peg. Crucially, the suboptimal demonstrations are in an area
of the state space where the optimal trajectory needs to pass through, so the RL and IL
objectives clash. Figure in the middle shows the learned trajectory from TD3+Shaping and
TD3+BC(+QFilter) with two choices of λ: 0.1 and 0.0001. The right most figure shows
the average episode returns over time. The empirical mean is computed from 4 seeds and
the error bars represent 1σ standard deviation.

We use another toy task, named Gym-PegInsertion-2D, to illustrate the impact of sub-

optimal demonstrations on RL+IL methods. This task is implemented based on the OpenAI

Gym API for Robotics environments but we limit the state and action spaces to a 2D

plane. As shown in the left figure of Figure 5.6, we provide sub-optimal demonstrations

that exaggerate the lift of the peg before inserting it into the hole. These demonstrations

are shown as red arrows. In addition, we add demonstrations that pushes the learned

policy away from the optimal trajectory, shown as green arrows. These extra sub-optimal

demonstrations are given in area of the state space where the optimal trajectory passes

through, so the IL objective clashes the RL objective. The learned trajectories are shown

in the second figure in Figure 5.6. In particular, we see that the RL+Shaping methods

converge to the optimal policy, regardless of any sub-optimality in the demonstrations.

On the other hand, the TD3+BC method is sensitive to the relative weight of the TD3

and BC objective, i.e. λ in Equation (5.1). When the role of the TD3 objective gets

reduced by setting λ = 0.0001, the learned policy does not manage to find the optimal

solution. Although there exists values of λ that does not bias the learned policy as much

(e.g. λ = 0.1), we cannot know what the best value is without trial and errors.

For complex tasks, one must carefully choose the value of λ to balance between sample

efficiency of RL and optimality of the learned policy. However, for RL+Shaping methods, we
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are much less concerned about learning sub-optimal policies because the shaping potential

does not bias the policy in theory. Furthermore, we can determine the most sensitive

parameters via the Φ − σ2 before running RL with the shaping potential, as discussed in

5.4.

5.6 Experiments on Short-Horizon Tasks

We present the results of running baseline algorithms and TD3+Shaping on Gym-PegInsertion

and Gym-PickAndPlace in Figure 5.7 and 5.8, respectively. Both tasks are implemented in

Mujoco [73] based on the OpenAI Gym API. We consider these two tasks as having short

task horizon because both of them can be successfully completed within 15 simulation steps

given an optimal policy. We ran TD3+Shaping with multiple kNF/GAN values to evaluate

its sensitivity to the choice of kNF/GAN.

Figure 5.7: Results of running TD3+Shaping and baseline algorithms on Gym-PegInsertion
with sub-optimal demonstrations. Figures in the top row show the average episode return
over time for baseline algorithms, and figures in the bottom row show the corresponding
curves of TD3+Shaping methods. The empirical mean is computed from 4 seeds and
the error bars represent 1σ standard deviation. With some choices of hyper-parameter,
TD3+BC(+QFilter) and TD3+Shaping(GAN) were not able to converge on all seeds, which
is why the curves show low mean and high variance.
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Figure 5.8: Results of running TD3+Shaping and baseline algorithms on Gym-
PickAndPlace with sub-optimal demonstrations. Figures in the top row show the average
episode return over time for baseline algorithms, and figures in the bottom row show the
corresponding curves of TD3+Shaping methods. The empirical mean is computed from
4 seeds and the error bars represent 1σ standard deviation. For TD3+Shaping, different
choices of kGAN/NF did not affect the optimality of the learned policy but had an impact on
its robustness to seeds. Some learning curves of the TD3+Shaping method have low mean
and high variance because the method converged on some seeds but did not on others.

For both tasks, TD3 cannot converge on any seed due to insufficient exploration, while

BC is able to complete the two tasks but the learned policies are clearly not optimal as

compared to the average episode return achieved by TD3+BC, TD3+BC+QFilter and

TD3+Shaping methods.

For TD3+BC, its performance, in terms of sample efficiency and average episode return,

varies with difference value of λ. When λ is small (e.g. λ <= 0.001), TD3+BC converges

fast but the final policy is strongly biased towards demonstrated trajectories that are not

optimal. In particular, one can see from Figure 5.8 that, when λ < 0.01, the learned policy

via TD3+BC is not much better than the policy trained through just BC. On the other

hand, when λ is large (e.g. λ >= 0.01), TD3+BC becomes less sample efficient. Figure 5.7

shows that when choosing λ = 0.1, TD3+BC cannot manage to converge on 3/4 seeds,

which is why the red line in the third plot of the first row has low mean but high variance.

Adding Q-filter to TD3+BC does not solve the problem of learning sub-optimal policies

completely. As shown in Figure 5.8, although TD3+BC+QFilter seems to get higher episode

return than TD3+BC for some choices of λ, the performance of the policies still varies.
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Moreover, since Q-filter may filter out good demonstrations, TD3+BC+QFilter generally

converges lower than TD3+BC, which means it is less sample efficient.

Finally, for TD3+Shaping, we can see that different choice of kNF/GAN does affect the

convergence of the policy. However, as long as the policy converges, it is always optimal un-

less the scale of the shaping gets too large. For example, all learning curves of TD3+Shaping

in Figure 5.8 become flat after a certain amount of exploration. Some curves have low mean

but high variance because the algorithm does not converge on all seeds. The fact that all

curves are flat at the end indicates that the performance of converged policies are stable

and optimal unlike those learned from RL+BC.

5.7 Experiments on Long-Horizon Tasks

In addition to the two short-horizon tasks discussed in 5.6, we also considered a few tasks

with longer horizon, which greatly increases the difficulty of finding good policies via RL.

These tasks come from MetaWorld [17] without any change to the task objective and setup.

For all tasks, it takes more than 40 simulation steps to complete and thereby is almost im-

possible for any pure RL algorithm to converge under the sparse reward setting. Figure 5.9

shows the results of running TD3+Shaping, TD3+BC and TD3+BC+QFilter on one of

these tasks, MW-PressButton.

As expected, the performance of the policies learned from TD3+BC given sub-optimal

demonstrations is highly dependent on the choice of λ. Even with the Q-filter, the policies

still get biased by sub-optimal demonstrations. From figures in the bottom row of Figure 5.9,

we can see that using the Q-filter, in fact, does not make much difference in the average

episode return of the converged policies.

However, for TD3+Shaping, we notice that it is also not able to learn optimal poli-

cies given sub-optimal demonstrations. Moreover, even with optimal demonstrations, the

performance of a converged policy seems to be dependent on the hyper-parameters, e.g.

kGAN/NF. To confirm that the learned policies are sub-optimal due to the shaping poten-

tial, we tried replacing the scaling factor kGAN/NF with a decreasing sequence k
GAN/NF
t such

that limt→∞ k
GAN/NF
t → 0. The results are shown in the right most plots in Figure 5.9,

where k
GAN/NF
t decreases linearly from kGAN/NF to 0 in the gray region. By comparing

the third and forth plots in both rows of Figure 5.9, one can see that the policies improve

significantly after decreasing the scale of shaping potential, which implies that the shaping

potential does affect the optimality of the learned policy for long-horizon tasks.
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Figure 5.9: Results of running TD3+BC, TD3+BC+QFilter and TD3 with normalizing
flow based shaping on MW-PressButton. Figures in the top row show the learning curves
given optimal demonstrations, and figures in the bottom row show the learning curves given
sub-optimal demonstrations. The two figures in the right show the results of applying a
decay schedule to the scaling factor kNF. kNF decreases linearly to 0 in the gray region.
The empirical mean is computed from 8 seeds and the error bars represent 1σ standard
deviation.

5.8 Discussion

We conclude our findings and answers to the questions asked at the beginning of this section:

1. In our method, the shaping potential trained on demonstration dataset D assigns high

values to (s, a) pairs close to those in D. In addition, it is sensitive within a certain

region around the states and actions in D, but almost flat outside this region. We found

that the performance of the shaping potential depends largely on the size of this region

and its overall scale, which are controlled by kGAN/NF and ηGAN/NF. In practice, we can

tune these two hyper-parameters using the Φ− σ2 plot introduced in 5.4 before training

the policy via RL.

2. In theory, policies learned through our method should always be optimal with respective

to the RL objective. We showed that this is true for short-horizon tasks in 5.6, where as

long as our method converges, the resulting policy is always optimal. However, we also

found that this statement does not hold for long-horizon tasks, as discussed in 5.7. In

particular, we showed that decreasing the shaping potential after the policy converges

could further increase the performance of the policy, which suggests that the shaping
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potential biases the policy.

3. Our method is significantly more sample efficient than pure RL methods. It is also more

efficient than initializing the policy via IL and then fine-tuning through RL. However,

our method is generally less sample efficient than methods with a hybrid RL and IL

objective.

4. The performance of our method is very sensitive to the scale and shape of the learned

shaping potential, and thereby sensitive to the scaling factor kGAN/NF and weight on the

regularization term ηGAN/NF. However, this does not make our method difficult to tune

because one can adjust these two parameters according to the Φ−σ2 plot before running

RL using the shaping potential.



Chapter 6

Conclusion and Future Work

In this thesis, we propose a method that combines reinforcement learning and imitation

learning through reward shaping. We use shaping potentials based on deep generative

models and actor-critic style RL algorithms such that our method can apply to environments

with continuous state and action spaces. The main advantages of our method are 1) it

improves the sample efficiency of RL, and 2) the learned policy is unbiased in the presence

of sub-optimal demonstrations.

Through several robotic manipulation tasks with varying difficulty, we showed that our

method is more efficient than pure RL methods and is able to converge quickly under sparse

reward setting. Furthermore, we showed that, for short-horizon tasks with sub-optimal

demonstrations, our method is able to learn the optimal policy, and the performance of the

converged policy is not sensitive to hyper-parameters. In contrast, policies learned through

methods with a hybrid RL and IL objective are not always optimal. However, for long-

horizon tasks, our method becomes sensitive to hyper-parameters and cannot manage to

find the optimal policy. Therefore, our next step is to address this problem and improve

the performance of our method on long-horizon tasks. Besides that, we also seek to further

improve the sample efficiency of our method so that its performance is more consistent

across different seeds. In particular, we will consider using more sophisticated exploration

strategies and prioritized experience replay which favors transitions that get the true reward

from the environment.
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Appendix A

Hyper-Parameters Used for All

Manipulation Tasks

In Table A.1, we describe the details of the important hyper-parameters used in our ex-

periments. The hyper-parameters for TD3 are mostly adopted from the original TD3 im-

plementation in [15]. The hyper-parameters for GAN and normalizing flow based shaping

potentials are obtained by trial and errors.

Toy Tasks Short-Horizon Tasks Long-Horizon Tasks

TD3 Hyper-Parameters

Discount Rate (γ) 0.95 0.99

Number of Training Epochs 100 400 2500

Env. Steps / Epoch (E × T ) 200 400 1500

Number of Batch / Epoch (B) 40

Batch Size 256

Actor/Critic Layer Sizes [256, 256, 256]

Actor/Critic Update Freq. (ncritic) 2

Target Policy Noise (σTD3) 0.2

Target Policy Noise Clip (cTD3) 0.5

Critic Learning Rate 1e-3

Actor Learning Rate 1e-3

Polyak Average (τ) 0.05

n-step Return (n) Not Used 30

Buffer Size 1000000

BC Initialization Hyper-Parameters

Number of Training Epochs 2000

Batch Size 128

Hybrid RL + BC Objective Hyper-Parameters
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Batch Size 128

GAN Based Shaping Potential Hyper-Parameters

Ensemble (K) 2

Number of Training Epochs 10000

Batch Size 128

Latent Dimension dim(S) + dim(A)

Gradient Penalty (gpGAN) 1.0

Dψ/Gφ Update Freq. (nGAN
critic) 5

Adam Learning Rate αGAN 1e-4

Adam βGAN
1 0.5

Adam βGAN
2 0.9

Normalizing Flow Based Shaping Potential Hyper-Parameters

Number of Ensembles 2

Number of Training Epochs 10000

Batch Size 128

Layer Sizes [256, 256]

Number of Bijective Functions (K) 4

Learning Rate 1e-4

Table A.1: List of hyper-parameters used for all tasks in our experiments.



Appendix B

Visualization of the Manipulation

Tasks

Figure B.1 shows the RGB images of the 3 tasks which we implemented using the OpenAI

Gym API for Robotics environments. Figure B.2 shows the RGB images of all manipulations

tasks provided in MetaWorld. The image is copied directly from MetaWorld’s open-source

GitHub repository. In our experiments, we adopted these tasks without change to their

objectives and setup.

Figure B.1: RGB images of the three manipulation tasks implemented based on OpenAI
Gym Robotics API [18]

.
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Figure B.2: RGB images of the 50 manipulation tasks from MetaWorld [17].

.
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